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Figure 1. Overview of DiTFlow. We propose a motion transfer method tailored for video Diffusion Transformers (DiT). We exploit a
training-free strategy to transfer the motion of a reference video (top) to newly synthesized video content with arbitrary prompts (bottom).
By optimizing DiT-specific positional embeddings, we can also synthesize new videos in a zero-shot manner.

Abstract

We propose DiTFlow, a method for transferring the
motion of a reference video to a newly synthesized one,
designed specifically for Diffusion Transformers (DiT).
We first process the reference video with a pre-trained
DiT to analyze cross-frame attention maps and extract
a patch-wise motion signal called the Attention Motion
Flow (AMF). We guide the latent denoising process in an
optimization-based, training-free, manner by optimizing la-
tents with our AMF loss to generate videos reproducing the
motion of the reference one. We also apply our optimization
strategy to transformer positional embeddings, granting us
a boost in zero-shot motion transfer capabilities. We eval-
uate DiTFlow against recently published methods, outper-
forming all across multiple metrics and human evaluation.

Corr.: pondaven@robots.ox.ac.uk fabio.pizzati@mbzuai.ac.ae

1. Introduction

Diffusion models have rapidly emerged as the global stan-
dard for visual content synthesis, largely due to their perfor-
mance at scale. By scaling the model size, it has been pos-
sible to train on increasingly large datasets, even including
billions of samples, incredibly boosting synthesis capabil-
ities [4, 12, 61, 66]. This trend is especially pronounced
in video synthesis, where generating realistic, frame-by-
frame visuals with coherent motion relies heavily on ex-
tensive data and large models. In this context, a particu-
larly promising development is the introduction of diffusion
transformers (DiTs) [37]. Inspired by transformers, DiTs
propose a new class of diffusion model that allows for im-
proved scalability, ultimately achieving impressive realism
in generation, as demonstrated by their adoption in many
scale-oriented open source [53, 61] and commercial sys-
tems [34, 38].
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However, realism alone is insufficient for real-world use
of synthesized videos. Control over the generated video
is essential for smooth integration into video creation and
editing workflows. Most current models offer text-to-video
(T2V) control through prompts, by synthesizing videos
aligned with a user’s textual description. However, this is
rarely sufficient for achieving the desired result. While text
may condition the appearance of objects in a scene, it is ex-
tremely challenging to control motion i.e. how the elements
move in the scene, since text is inherently ambiguous when
describing how fine-grained content evolves over time. To
overcome this challenge, motion transfer approaches have
used existing reference videos as a guide for the dynamics
of the scene. The aim is to capture realistic motion patterns
and transfer them to synthesized frames. However, most ex-
isting approaches are UNet-based [45] and do not take ad-
vantage of the superior performance of DiTs, which jointly
process spatio-temporal information through their attention
mechanism. We believe this opens up opportunities to ex-
tract high-quality motion information from the internal me-
chanics of DiTs.

In this paper, we propose DiTFlow, the first motion trans-
fer method tailored for DiTs. We leverage the global atten-
tion token-based processing of the video, inherent to DiTs,
to extract motion patterns directly from the analysis of at-
tention blocks. With this representation, referred to as At-
tention Motion Flow (AMF), we are able to condition the
motion of the synthesized video content, as we show in Fig-
ure 1. We exploit an optimization-based, training-free strat-
egy, coherently with related literature [59, 62]. In practice,
we optimize the latent representation of the video across
different denoising steps to minimize the distance to a ref-
erence AMF. While employing a separate optimization pro-
cess for each video yields the best performance, we also
discover that optimizing the positional embeddings within
DiTs enables the transfer of learned motion to new gener-
ations without further optimization, hence in a fully zero-
shot scenario not previously possible with UNet-based ap-
proaches. This potentially lowers the computational cost of
transferring motion on multiple synthesized videos. Over-
all, our novel contributions are the following:
1. We propose Attention Motion Flow as guidance for mo-

tion transfer on DiTs.
2. We propose an extension to our optimization objective in

this DiT setting, demonstrating zero-shot motion transfer
when training positional embeddings.

3. We test DiTFlow on state-of-the-art large-scale DiT
baselines for T2V, providing extensive comparisons
across multiple metrics and user studies.

2. Related works
Text-to-video approaches. Following the success of dif-
fusion models [19, 48, 50, 51] in generating images from

text [41, 42, 44], methods to handle the extra temporal di-
mension in videos were developed [2, 3, 5, 15, 20, 25].
These approaches commonly rely on the UNet [45] archi-
tecture with separate temporal attention modules operating
on solely the temporal dimension for cross-frame consis-
tency. Recently, Diffusion Transformer (DiT) based ap-
proaches for text-to-image (T2I) [6, 12, 37] and text-to-
video (T2V) [4, 7, 16, 32, 33, 61, 66] have shown superior
performance in quality and motion consistency. In particu-
lar, VDT [32] highlights the transformer’s ability to capture
long-range temporal patterns and its scalability.

Motion transfer. Motion transfer consists of synthesizing
novel videos following the motion of a reference one. Un-
like video-to-video translation [10, 31, 46], motion transfer
approaches aim for complete disentanglement of the origi-
nal video structure, focusing on motion alone. Some meth-
ods use training to condition on motion signals like trajec-
tories, bounding boxes and motion masks [8, 11, 56, 57, 60,
63, 64], but this implies significant costs. Other approaches
train motion embeddings [23] or finetune model parameters
[15, 22, 58, 65]. However, these methods use separate at-
tention for temporal and spatial information, making them
unsuitable for DiTs. Optimization-based approaches extract
a motion representation at inference [14, 21, 59, 62], which
is more suitable for cross-architecture applications. Token-
Flow [14] has a nearest-neighbor based approach on diffu-
sion features, employing expensive sliding window analy-
sis. SMM [62] employ spatial averaging, while MOFT [59]
discover motion channels in diffusion features.

Attention control in diffusion models. Attention fea-
tures containing semantic correspondences can be manip-
ulated to control generation [13, 17, 40]. Video editing
approaches modify the style or subject with feature injec-
tion [1, 28, 31, 55] or gradients [10, 36]. Note that previ-
ous UNet-based methods have computed a loss on attention
in order to transfer motion [30]. However, this assumes
separate temporal attention with easily separable motion.
This is an unreasonable assumption for DiTs that use full
spatio-temporal attention where disentangling motion pat-
terns from content becomes more challenging.

3. Preliminaries
In this section, we introduce the basic formalism and con-
cepts necessary for DiTFlow. We begin by reviewing the
inference mechanics of T2V diffusion models (Section 3.1).
We then introduce DiTs for video generation (Section 3.2).

3.1. Text-to-video diffusion models
Let us consider a pre-trained T2V diffusion model. We aim
to map sampled Gaussian noise to an output video x0 using
a denoising network ϵθ over t ∈ [0, T ] denoising opera-
tions [19]. To reduce the computational cost of multi-frame
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generation, video generators typically use Latent Diffusion
Models (LDM) [44], which operate on latent video repre-
sentations defined by a pre-trained autoencoder [27] with
encoder E and decoder D. We map a sampled Gaussian
zT ∼ N (0, I) to z0 ∈ RF×C×W×H , where C,W,H repre-
sent the latent channels, width, and height dimensions, re-
spectively. Noisy latents zt at each step t maintain the same
shape until decoded to the output video x0 = D(z0). We
formalize the basic denoising iteration as:

zt-1 = f(zt, ϵθ(zt, C, t)), (1)

where C is the textual prompt describing the desired output
video. This textual signal can condition the network using
cross-attentions [44], or by being directly concatenated
with the video latent representation [61]. The function
f describes how noise is removed from zt following a
specific noise schedule over T steps [19, 49].

3.2. Video generation with DiT
Unlike U-Net diffusion models [44], DiT-based sys-
tems [37] treat the noisy latent as a sequence of tokens,
taking inspiration from patching mechanisms typical of Vi-
sion Transformers [9]. The denoising network ϵθ is replaced
with a transformer-based architecture. Latent patches of
size P × P are encoded into tokens with dimension D and
reorganized into a sequence of shape (F · HP · WP )×D. The
denoising network ϵθ is composed of N DiT blocks [37]
consisting of multi-head self-attention [54] and linear lay-
ers. To encode positional information between patches dur-
ing attention, a positional embedding ρ, consisting of values
dependent on the patch location in the sequence, conditions
the denoising network ϵθ(zt, C, t, ρ). Various position
encoding schemes exist [47, 52, 54] where ρ is most
commonly either added directly to patches at the start of ϵθ
or augment the queries and keys at each attention block.

4. Method
Our core idea is to take advantage of the attention mecha-
nism in DiTs to extract motion patterns across video frames
in a zero-shot manner. Building on the intuition behind mo-
tion cue extraction discussed in Section 4.1, we then de-
scribe the creation of AMFs in Section 4.2. The AMF ex-
tracted from a reference video can be used as an optimiza-
tion objective at a particular transformer block in the de-
noising network, as illustrated in Figure 2. We define how
we use the AMF for optimization in Section 4.3. Note that
the extracted motion patterns are independent from the in-
put content, enabling the application of motion from a ref-
erence video to arbitrary target conditions.

4.1. Cross-frame Attention Extraction
We aim to extract the diffusion features of a reference video
xref with a pretrained T2V DiT model in order to obtain

AMF

Guidance
Path

Diffusion
Path

DiT

Positional
Embedding

/

/

Latent zt

Prompt    C Latent zt-1

ρ

DiT
Latent zref

Figure 2. Core idea of DiTFlow. We extract the AMF from a ref-
erence video and we use that to guide the latent representation zt
towards the motion of the reference video. In our experiments, we
also tested optimizing positional embeddings for improved zero-
shot performance.

a signal for motion. The motion of subjects in a video
may be described by highly correlated content that changes
spatially over time, so tokens with similar spatial content
will intuitively attend to each other across frames. Hence,
we can benefit from extracted token dependencies between
frames to reconstruct how a specific element will move over
time. We start by computing the latent zref = E(xref) and
pass it through the transformer at denoising step t = 0 with
an empty textual prompt. Previous work [59] have observed
a cleaner motion signal at lower denoising steps and we
found t = 0 to be suitable for feature analysis of the in-
put video. This also avoids the need for expensive DDIM
inversion [49] for our task. Let us consider the n-th DiT
block of ϵθ. The self-attention layer computes keys K and
queries Q for M attention heads for all F ·S = F · (HP · WP )
tokens, where Dh = D/M is the dimension of each head.
We average over the heads for feature extraction to reduce
noise and memory consumption when optimizing. All fu-
ture reference to K and Q are assumed to be averaged over
heads. We represent this operation as:

{Q,K} n←− ϵθ(zref,∅, 0, ρ). (2)

Hence, for two frames (i, j), i, j ∈ [1, F ] we can calculate
the cross-frame attention A⊗

i,j as follows:

A⊗
i,j = σ

(
τ
QiK

T
j√

dk

)
∈ R(F ·S)×(F ·S). (3)

In Equation (3), Qi and Kj refer to the query and key matri-
ces of the i-th and j-th frames with shape S×Dh. Here, σ is
the softmax operation over the final dimension i.e. over to-
kens in the j-th frame,

√
dk is the attention scaling term [54]

and τ is a temperature parameter. Intuitively, A⊗
i,j encodes

the relationship between patches of frames i and j from xref,
serving as a signal to capture the reference video motion.
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Figure 3. Guidance. We compute the reference displacement by
processing cross-frame attentions with an argmax operation and
rearranging them into displacement maps, identifying patch-aware
cross-frame relationships. For video synthesis, we do the same
operation with a soft argmax to preserve gradients, and impose
reconstruction with the reference displacement.

4.2. Attention Motion Flows
We subsequently capture the AMF of the video by estimat-
ing a displacement map of spatial patches across all frame
combinations. Each frame is composed of H

P · WP patches.
Intuitively, we are interested in understanding how the con-
tent of all patches of frame i move to obtain the frame j.
To do so, we first process A⊗

i,j with an argmax operation, to
identify uniquely, for each patch in the i-th frame, the index
of the patch most attended to in the j-th frame. We call this
value Â⊗

i,j . Selecting only one index with argmax empiri-
cally produces a cleaner map leading to more reliable mo-
tion guidance. We then use the obtained index pairs to con-
struct a patch displacement matrix ∆i,j of size S × 2. Each
element in ∆i,j indicates, for a given coordinate (u, v),
the displacement (δu, δv) on the u and v axes between the
(u, v) cell and the matched cell in frame j indicated by the
index in Â⊗

i,j i.e. the (u+ δu, v+ δv) cell. The procedure is
illustrated in Figure 3 (top). Finally, we aggregate the infor-
mation for all i, j to construct the reference AMF that we
will use as the motion guidance signal:

AMF(zref) = {∆i,j} i, j ∈ [1, F ]. (4)

Our extracted AMF follows the idea of motion vectors used
in MPEG-4 patch-based video compression [43], but is ap-
plied to DiT latent representations. In summary, for each
patch, we calculate a motion vector in a two-dimensional
coordinate space that indicates where the patch will move

Algorithm 1 DiTFlow inference pipeline

Input: Reference video xref, trained DiT model ϵθ, encoder
E , decoder D, prompt C, positional embedding ρ.

Output: Generated video x0 with transferred motion
1: Extract latent representation: zref ← E(xref)

2: Compute attention: {Q,K} n←− ϵθ(zref,∅, 0, ρ)
3: for each (i, j) where i, j ∈ [1, F ] do
4: Calculate cross-frame attention A⊗

i,j

5: Construct displacement matrix ∆i,j

6: end for
7: Construct reference AMF: AMF(zref)← ∆i,j

8: Initialize zT ∼ N (0, I)
9: Initialize ρT = ρ

10: for denoising step t = T to 0 do
11: if t > Topt then
12: for optimization step k = 0 to Kopt do
13: Extract Q̃ and K̃: {Q̃, K̃} n←− ϵθ(zt, C, t, ρt)
14: for each (i, j) where i, j ∈ [1, F ] do
15: Calculate cross-frame attention Ã⊗

i,j

16: Compute soft displacement matrix ∆̃i,j

17: end for
18: Construct AMF(zt)← ∆̃i,j

19: Get LAMF ← ||AMF(zref)− AMF(zt)||22
20: Update zt or ρt by minimizing LAMF
21: end for
22: else
23: ρt = ρ
24: end if
25: zt−1 = f(zt, ϵθ(zt, C, t, ρt))
26: end for
27: return x0 = D(z0)

from frame i to frame j, effectively capturing the motion.

4.3. Guidance and Optimization
Once the reference AMF is obtained from xref, we use it
to guide the generation of new video content with a T2V
DiT model. Specifically, we aim to guide the denoising of
zT ∼ N (0, I) in such a way that x0 = D(z0) reproduces
the same motion patterns as xref. Here, we enforce guidance
with an optimization-based strategy, aimed to reproduce the
same extracted AMF at a given transformer block for the
generated video in intermediate denoising steps t. For a
given t, we consider key K̃ and query Q̃ extracted by the
n-th DiT block while processing the input latent zt:

{Q̃, K̃} n←− ϵθ(zt, C, t, ρt) (5)

We follow the procedure described in Equation (3) to extract
the corresponding cross-frame attention Ã⊗

i,j :

Ã⊗
i,j = σ

(
τ
Q̃iK̃

T
j√

dk

)
(6)
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We then calculate soft displacement matrices ∆̃i,j with the
obtained attention. Rather than using argmax, we perform a
weighted sum of the attention values of each patch to iden-
tify continuous displacement values that preserve gradients.
We illustrate this in Figure 3 (bottom). We then build the
soft AMF for the current step t:

AMF(zt) = {∆̃i,j} i, j ∈ [1, F ]. (7)

Finally, we synthesize a new video by minimizing the
element-wise Euclidean distance between the AMF dis-
placement vectors of the reference and current denoising
step. This equates to minimizing the following loss:

LAMF(zref, zt) = ||AMF(zref)− AMF(zt)||22 (8)

We follow previous U-Net-based approaches [59, 62] and
optimize zt by backpropagating this loss in specific de-
noising steps. An alternative approach, benefiting from the
DiT-specific presence of positional encodings, is to back-
propagate the loss to optimize positional embeddings ρt.
Note that positional embeddings are responsible for encod-
ing the spatial and temporal locations of content. Intu-
itively, by manipulating the positional information of these
latent patches, we are guiding the reorganization of patches,
which makes such optimization suitable for motion trans-
fer. Moreover, this is disentangled from the latent repre-
sentation that encodes content. Hence, we empirically ob-
served that while latent optimization leads to better overall
performance, optimizing ρt enables better generalization of
the learned embeddings to new prompts without repeating
the optimization, allowing for fully zero-shot inference. In
practice, we optimize zt or ρt for Kopt steps, up until a given
denoising step Topt ∈ [0, T ) of the diffusion process, while
denoising normally for the remaining steps. We report our
full inference scheme in Algorithm 1.

5. Experiments
5.1. Experimental Setup
Dataset and metrics. For evaluation, we use 50 unique
videos from the DAVIS dataset [39] coherently with the
state-of-the-art [59, 62]. To allow for a fine-grained motion
transfer assessment, we test each video with three different
prompts in order of similarity from the original video: (1)
a Caption prompt, created by simply captioning the video.
This allows us to verify that the network disentangles the
content from that of the original frames. (2) A Subject
prompt, obtained by changing the subject while keeping the
background the same. (3) Lastly, a Scene prompt, describ-
ing a completely different scene. This makes 150 motion-
prompt pairs in total. For the evaluation, we use an Image
Quality (IQ) metric for frame-wise prompt fidelity assess-
ment based on CLIPScore [18] and a Motion Fidelity (MF)

metric for motion tracklet consistency following [62]. The
MF metric [62] compares the similarity of tracklets on x
and xref obtained from off-the-shelf tracking [24].

Baselines and networks. For video synthesis, we use the
state-of-the-art DiT CogVideoX [61] with both 2 billion
(CogVideoX-2B) and 5 billion (CogVideoX-5B) parame-
ter variants. We compare against four baselines. First,
we present a Backbone method, which simply prompts the
T2V model with C. This will act as a lower bound on MF.
Following common practices [59], we define an Injection
baseline injecting extracted attention features during infer-
ence. Specifically, we inject keys K and values V obtained
by processing xref with the DiT at inference time. This
loosely directs the structure of the synthesized scene, al-
lowing it to roughly follow the spatial organization of ele-
ments in xref without DDIM inversion [49]. Given the sim-
plicity and effectiveness of this technique, we apply it to
all baselines except for the Backbone. We evaluate against
two optimization-based guidance methods: SMM [62] and
MOFT [59]. These methods are applicable to the DiT ar-
chitecture as they guide noisy latents rather than temporal
attention inherent to previous UNet-based work. Therefore,
we apply them both to CogVideoX for a fair comparison.
For SMM, we replace the expensive DDIM inversion op-
eration, taking over one hour per video on CogVideoX-5B,
with KV injection. For fairness, we normalize the number
of optimization steps. Due to the unavailability of the eval-
uation videos and prompts used in related works [59, 62],
we test all baselines on our DAVIS setup.

Inference settings We employ 50 denoising steps for all
baselines and optimize for 5 steps using Adam [26] in the
first 20% of denoising timesteps with a linearly decreasing
learning rate following [62] from 0.002 to 0.001. We evalu-
ate our AMF-based loss on the 20th block for CogVideoX-
5B and the 15th for 2B. We apply KV injection on the first
DiT block. Temperature τ is set to 2, emphasizing higher
similarity tokens. On an NVIDIA A40 GPU, CogVideoX-
2B generates a 21-frame video in around 3.5 minutes and 4
minutes with DiTFlow. CogVideoX-5B takes on average 5
minutes by default and 8 minutes with DiTFlow guidance.
Unless explicitly specified, we optimize the latents zt.

5.2. Benchmarks
Quantitative evaluation We evaluate the effectiveness of
DiTFlow when optimizing zt in order to directly compare
our AMF-based guidance with baselines. In the results pre-
sented in Table 1, we consistently outperform all baselines.
In particular, we considerably improve MF in both 5B and
2B models, scoring 0.785 and 0.726 respectively. In com-
parison, the best baseline, SMM, achieves 0.766 and 0.688,
demonstrating our superior capabilities to capture motion.
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CogVideoX-5B CogVideoX-2B

Method Caption Subject Scene All Caption Subject Scene All
MF ↑ IQ ↑ MF ↑ IQ ↑ MF ↑ IQ ↑ MF ↑ IQ ↑ MF ↑ IQ ↑ MF ↑ IQ ↑ MF ↑ IQ ↑ MF ↑ IQ ↑

Backbone 0.524 0.315 0.502 0.321 0.544 0.318 0.523 0.318 0.521 0.313 0.495 0.312 0.523 0.314 0.513 0.313

Injection [59] 0.608 0.315 0.581 0.321 0.635 0.320 0.608 0.319 0.546 0.315 0.524 0.317 0.563 0.321 0.544 0.318
SMM [62] 0.782 0.313 0.741 0.317 0.776 0.316 0.766 0.315 0.687 0.312 0.682 0.312 0.694 0.317 0.688 0.312
MOFT [59] 0.728 0.313 0.728 0.321 0.722 0.319 0.726 0.318 0.503 0.312 0.502 0.313 0.508 0.315 0.504 0.312
DiTFlow 0.790 0.316 0.775 0.321 0.789 0.319 0.785 0.319 0.685 0.311 0.753 0.322 0.739 0.320 0.726 0.317

Table 1. Metrics evaluation. We compare DiTFlow across 3 different caption setups (Caption, Subject, Scene) and against 4 baselines.
We consistently score first or second in all metrics for almost all scenarios, advocating the quality of our motion transfer. Performance is
consistent across two backbones with 5B and 2B parameters respectively. Best results are in bold and second best are underlined.
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“Dog running between poles in an agility course” “Bear running in a garden” “Parachuting over a city, aerial view from above”

Figure 4. Baseline comparison. Baselines associate motion to wrong elements due to poor layout representation typical of UNet-based
approaches that do spatial averaging or only consider deviations at each location. DiTFlow captures the spatio-temporal motion of each
patch, resulting in correct spatial positioning and sizing of moving elements, e.g. the dog (left), the bear (middle), the parachute (right).

Let us also highlight that when tested on Subject prompts,
SMM on CogVideoX-5B reports considerably lower MF
(0.741) with respect to performance on Caption (0.782) and
Scene (0.776). We attribute this to the entanglement of
the guidance signal with xref. Notably, SMM is based on
spatially-averaged global features extracted from the refer-
ence video. This makes it challenging to tackle semantic
modifications impacting only part of the scene, such as Sub-
ject prompts. This is less evident for CogVideoX-2B due to
the inferior overall performance. Conversely, DiTFlow and
MOFT preserve local guidance, allowing for a more fine-
grained semantic control on generated scenes. We observe
that IQ values exhibit lower variability compared to setups
with heterogeneous backbones [62]. This proves that the
architecture is the main factor impacting image quality, fur-
ther justifying our investigation of DiTs.

Qualitative comparison. We visually compare video
generations of CogVideoX-5B against baselines in Figure 4.
The Injection method is able to transfer coarse subject loca-
tion information while deviating significantly from the ref-
erence motion. For instance, in the Subject example, the
bear walks in the opposite direction. Similarly, SMM suf-
fers in Subject prompts, as observed quantitatively. SMM is
based on a spatial averaging operation over features, which
limits feature disentanglement as shown in the Subject col-
umn, where the rendered bars resemble those of the refer-
ence video. MOFT also tends to move the wrong elements
in the scene as seen in the Caption example where the poles
are moved instead of the dog. Their extracted MOFT fea-
ture guides the deviation of each spatial location from the
temporal average, which can easily target the wrong con-
tent. DiTFlow, on the other hand, improves motion assign-
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Figure 5. Qualitative results of DiTFlow. We are able to perform motion transfer in various conditions. Note how varying the prompt
completely changes the scene’s appearance while maintaining consistent motion. We map motion to correct elements even in cases where
the motion changes drastically in positioning and size (bottom right).
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Figure 6. Human evaluation. We asked humans to evaluate
agreement on the quality of generated samples in terms of motion
(left) and prompt (right) adherence. DiTFlow consistently outper-
forms baselines in both evaluations.

ment by guiding the explicit relationship of patches across
both space and time through our AMF feature rather than
guiding each location independently as in MOFT.

We present additional qualitative results of DiTFlow in
Figures 5 and 1. DiTFlow demonstrates realistic rendering
of motion in different setups. We preserve motion in scenar-
ios very different from the reference, such as in the top row.
Moreover, motion is correctly mapped to specific elements

in the scene even if they change drastically in size across
frames as in the challenging example in the bottom right.
We attribute this to our patch-wise motion understanding,
allowing it to capture fine-grained signals.

Human evaluation. We additionally compare baselines
on a study involving human judgment. In the first exper-
iment (Motion Adherence), we show users the reference
video together with videos synthesized by DiTFlow and the
best baselines on CogVideoX-5B. We ask in a Likert-5 [29]
preference scale how much they agree with the statement
“The motion of the reference video is similar to the mo-
tion of the generated video”. Users were instructed to focus
on motion dynamics and ignore content differences. In the
second experiment, users were asked to assess Prompt Ad-
herence, thus providing a video-level IQ score. They were
asked to rate their agreement with the statement “The text
accurately describes the video”. We collect 66 preferences
across 30 individuals, accounting for 1,980 unique answers.
We report results in Figure 6. DiTFlow significantly outper-
forms both MOFT and SMM, consistent with the results in
Table 1.
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a lab coat on a field”

SM
M

O
ur

s-
z t

O
ur

s-
ρ

“A camel walking in a zoo” “Zoom into a lion standing on a
cliff looking towards us”

(b) Qualitative evaluation

Figure 7. Zero-shot performance. In (a), we quantify zero-
shot effectiveness. We compare performance by optimizing each
prompt (Optimized) or using pre-optimized representations with
new prompts (Zero-shot). Overall, optimizing ρ allows for better
preservation of IQ. This results in better zero-shot disentanglement
when changing the prompt, as shown in (b).

5.3. Zero-shot generation

We evaluate the zero-shot capabilities of DiTFlow by run-
ning inference with our optimized ρ and a new input prompt
without further optimization. We quantify performance
across the three prompt categories. We optimize ρ on one
prompt and infer with a different prompt. For instance, the
optimized representation on the Caption prompt is used in
a zero-shot manner to generate outputs with Subject and
Scene prompts. Using the 5B model, we compare our meth-
ods to SMM [62], the best baseline method on MF in Ta-
ble 1. In Figure 7a, we report average zero-shot perfor-
mance across all prompts. We define Ours-zt as DiTFlow
with zt optimization and Ours-ρ as DiTFlow with positional
embedding optimization following Section 4.3.

While optimizing zt leads to better zero-shot motion
preservation (-0.2%) compared to ρ (-5.2%), we report a
significant drop in prompt adherence (-4.4% vs -0.3%). As

Block MF ↑ IQ ↑
0 0.620 0.321
10 0.670 0.309
20 0.797 0.313
30 0.558 0.315

(a) Guidance block

Topt MF ↑ IQ ↑
0% 0.623 0.317

20 % 0.797 0.313
40 % 0.813 0.314
80 % 0.803 0.311
100 % 0.799 0.312

(b) Denoising steps

Kopt MF ↑ IQ↑
1 0.769 0.318
5 0.797 0.313

10 0.803 0.313

(c) Optimization steps

Table 2. Ablation studies. We investigate our inference setups.
In (a), we highlight that early blocks in DiTs contribute more to
motion. In (b) and (c), we show that DiTFlow performance can be
further boosted by increasing computational power.

seen in Figure 7b, this drop is significant as injecting the
optimized zt partially leaks the content of the optimization
prompt. In the last columns, while the lion is rendered cor-
rectly, the output video still features the lab coat mentioned
in the prompt. Optimizing ρ in the final row avoids this
issue while rendering the desired motion, as the positional
embedding has no impact on generated semantics, thus dis-
entangling motion from content. Ultimately, with our find-
ings on DiTs, we provide a novel adaptable strategy for pri-
oritizing absolute performance through latent optimization
or zero-shot capabilities using positional embeddings.

5.4. Ablation studies
We ablate our design choices for DiTFlow on CogVideoX-
5B. In Table 2, we show the impact of 1) the DiT block
index where we optimize, 2) the denoising iterations with
guidance and 3) the number of optimization steps by vary-
ing each in isolation. We run DiTFlow on 14 unique videos
and corresponding prompts. In Table 2a, we show that the
first blocks of CogVideoX-5B have incremental importance
in motion guidance. We select the 20th block yielding best
metrics. We notice that increasing the number of denoising
(Table 2b) and optimization steps (Table 2c) positively im-
pacts motion transfer at the cost of more computation. In
particular, we report best performance for 40% of T (MF
0.813) and 10 optimization steps (MF 0.803). Each of these
setups double the optimization time for each generation,
hence we selected 20% of T and 5 optimization steps for
the best speed/quality tradeoff. Nevertheless, this enables
improved motion transfer by investing in computation.

6. Conclusions
We present DiTFlow, the first DiT-specific method for
motion transfer, based on our novel AMF formulation.
Through extensive experiments and multiple evaluations,
we demonstrate the effectiveness of DiTFlow against base-
lines in motion transfer, with extensions to zero-shot gener-
ation. Improved video action representations in DiTs may
lower costs for generating robotic simulations and enable
intuitive control of subject actions in content creation.
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Video Motion Transfer with Diffusion Transformers

Supplementary Material

We strongly encourage readers to check the qualitative
video samples in the project page at ditflow.github.
io. Here, we provide additional elements for easing the un-
derstanding of our work. Specifically, we first provide im-
plementation details in Section A. Then, we provide addi-
tional reasoning about alternative strategies for supervision
(Section B). Finally, we discuss limitations (Section C).

A. Implementation
Positional embedding training details CogVideoX-5B
uses a different positional embedding mechanism to
CogVideoX-2B. CogVideoX-2B uses 3D sinusoidal em-
beddings similar to [54] and these are simply added to the
tokens to provide absolute positional information. During
guidance, gradients can backpropagate from the AMF loss
at block 15 to these embeddings. CogVideoX-5B uses 3D
rotary positional embeddings (RoPE [52]) that are embed-
ded into all queries and keys at each attention block. Gradi-
ents still backpropagate from block 20 to the RoPE applied
to all previous blocks.

Dataset We provide a sample of the dataset in Table 3.
Video names are the same as those used in the DAVIS
dataset [39]. Please refer to the supplementary material in-
cluded in the project page for the full dataset and visuals.

B. Nearest neighbor alternatives
An alternative signal for AMF construction could have been
the usage of nearest neighbors on noisy latents, as in related
works [14]. In Figure 8, we visualize correspondences ex-
tracted between two frames using this technique and com-
pare it to our AMF displacement. We demonstrate a much
smoother displacement map, which can lead to better guid-
ance on the rendered video.

C. Limitations
As seen in previous methods [62], generations are still lim-
ited to the pre-trained video generator, so it has difficulty
transferring motion with prompts or motions that are out
of distribution. For example, complex body movements
(e.g. backflips) still remain a difficult task for these mod-
els. Moreover, we highlight that motion transfer is inher-
ently ambiguous if not associated to prompts. For example,
transferring the motion of a dog to a plane may risk to map
motion features of other elements in the scene to the plane
in the rendered video, even with KV injection. For future
work, we believe it will be important to associate specific

(a) Frame i (b) Frame j

(c) Latent nearest neighbour (d) AMF displacement ∆i,j

Figure 8. Displacement maps of squat motion. We visualise
the displacement map between frames (a) and (b) computed on
latents. The displacements are mapped to colours according to
the colour wheel arrows shown. Taking the latent nearest neigh-
bour [14] in (c) results in very noisy displacements with poor
matching of content between frames. The AMF displacement in
(d) captures the downwards (yellow) motion of the person and
rightwards (red) motion of the panning camera better.

semantic directions (e.g. dog 7→ plane) to constrain editing,
similar to what happens in inversion-based editing [35].
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Video Caption Subject Scene
blackswan A black swan swimming in a river A duck with a tophat swimming

in a river
A paper boat floating in a bathtub

car-turn A gray car with black tires driving
on a road in a forest

A man with a black top running
on a road in a forest, camera shot
from a distance

Black suv with tinted windows
driving through a roundabout in
a bustling city, surrounded by tall
buildings and bright lights

car-roundabout A gray mini cooper driving
around a roundabout in a town

A man riding a unicycle around a
roundabout in a town

A lion walking through a bustling
roundabout, surrounded by vi-
brant city life

libby Dog running in a garden Bear running in a garden Plane flying through the sky
above the clouds

bus Aerial view of bus driving on a
street

Aerial view of red ferrari driving
on a street

Closeup aerial view of an ant
crawling in a desert

camel A camel walking in a zoo A giraffe walking in a zoo A blue Sedan car turning into a
driveway

bear A bear walking on the rocks A giraffe walking on the rocks A giraffe walking in the zoo
bmx-bumps BMX rider biking up a sandy hill Black Jeep driving up a sandy hill Black Jeep driving up a hill in a

bustling city
bmx-trees Kid with white shirt riding a bike

up a hill, seen from afar, long-
distance view

Leopard running up a grassy hill Leopard running up a snowy hill
in a forest

boat Fishing boat sails through the sea
in front of an island, close-up,
medium shot, elevated camera an-
gle, wide angle view

Black yacht sails through the sea
in front of an island

Black yacht sails through the sea
in front of a bustling city

Table 3. Dataset snippet. Sample of DAVIS videos chosen with associated prompts from each category described in Section 5.
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